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Energy level statistics in the transition region between 
integrability and chaos 
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SL0-62000 Maribbr, Slovenia 

Received 21 April 1992 

Abstract. A generic oni-parameter family of billiards dismvmd and ineoduced byRobnik 
(1983) is used U) study lhe s p x m l  properlies of corresponding quantum systems. When the 
parameter is varied a smaoth Ransition from an integrable system over a typical KAM system 
to an aimon ergodic system can be observed. We calculate up to 7600 lowest reliable enagy 
~levels. 

A detailed analysis of the numerical daia shows significant deviation from the seemiclassical 
Berry-Rob& formulae for the nearesf-neighbour level spacing dispiwtion P ( S )  except for 
large kvel spacings, S w 1. which can only be explained~by a very slow convergence towards 
the semiclassical regime where these formulae are predicted 10 be conen At small S the power- 
law level repulsion is clearly observed and a fit by the phenomenological formula by Inailev is 
statistically significant. 

1. Introduction 

One of the fundamental questions in quantum chaos is the correspondence between the 
classical dynamics of a given Hamiltonian dynamical system and the statistical properties 
of the energy spectrum of its quantum counterpart (Bohigas and Giannoni 1984, Fkkhardt 

Classical Hamiltonian systems can exhibit three types of qualitatively different 
dynamical regimes. In the integrable case the stable classical motion in the 2f-dimensional 
phase space (where f is the number of freedoms) is confined to f-dimensional invariant 
tori, which fill the entire phase space. The opposite extreme of ergodicity is characterized 
by a typically unstable, chaotic motion on the entire (2f - I)-dimensional energy surface 
where, by definition, almost every trajectory comes arbitrarily close to almost any other 
point on the energy surface. However, there is a mixed regime in the transition region 
between integrability and ergodicity where regions of stable regular motion on invariant 
ton (regular regions) coexist on the energy surface with the so-called irregular regions of 
chaotic motion (of presumably positive measure on which the motion is ergodic-like). 

As for the statistical properties of quantum spectra of classically integrable and ergodic 
Hamiltonian systems, it has been shown that they represent two universality classes. 

The energy spectrum of a classically integrable Hamiltonian system represents a 
sequence of completely uncorrelated numbers and the spectral fluctuations obey Poissonian 
statistics, as has been argued theoretically by Berry and Tabor (1977), and demonstrated 
numericaUy by several workers (see Casati et ol 1965,1986, Feingold 1965, Seligman and 
Verbaarschot 1986). In  terms of the nearest level spacing distribution P ( S )  (P(S )  dS is the 
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probability that energy spacing El;+i - E k  for some random index k lies between S and 
S + dS), we have the result 

T Prosen and M Robnik 

P' (s) = e-' (1) 

provided that the level sequence E k  is normalized to the unit mean level spacing, 
j'dSSP(S) = 1. 

On the other hand, in another extreme of ergodicity it has been conjectured by Bohigas 
et a1 (1984) that the statistical propelties of quantum spectra can be modelled by the 
ensembles of random matrices, namely with a GO€ (Gaussian orthogonal ensemble) in 
the case of time-reversal symmetry (or more generally, any other anti-unitary symmetry) or 
with GUE (Gaussian unitary ensemble) in the absence of such symmetry (Robnik and Berry 
1986, Robnik 1986). There is growing numerical support for this conjecture, e.g. as given 
recently in Robnik (1992a.b) and in Bohigas et a1 (1990). Here we should also mention the 
numerically supported phenomenological theory of Wilkinson et al (1991) and Feingold et 
a1 (1991) which models the quantum Hamiltonian of a classically ergodic system in the basis 
of another ergodic Hamiltonian and makes use of the semiclassical estimates of the matrix 
elements (Feingold and Peres 1986, Feingold ef a1 1989). For theoretical arguments using 
the Gutzwiller approach see Wilkinson (1988). Their conclusion is again consistent with the 
conjecture of Bohigas et a1 (1984) except possibly in the case of two freedoms, where some 
doubts have been raised. In this universality class the energy levels are highly correlated, 
displaying level repulsion, which is very well approximated by the Wigner distribution for 
P ( S )  (in the case in which there is anti-unitary symmetry) 

p W ( s )  = 4nse-ns2J4, (2) 

It should be emphasized that this discovery of the universality classes of spectral 
statistics in the cases where the classical limit is integrable or ergodic is one of the important 
recent results in quantum chaos (see e.g. Gutzwiller 1990, Haake 1991). However, this 
classification scheme applies only to generic systems, and some notable exceptions are 
quite well known, for example the geodesic motion on the compact surfaces of constant 
negative curvature (Balas and Voros 1986, Bohigas et a1 1986, Aurich and Steiner 1989) 
and the billiards with a singular scatterer (Seba 1990). 

The intermediate regime of mixed dynamics in the classical phase space where regular 
and irregular regions coexist on ,the energy surface is also still a subject of intense 
research work It has been shown for the first time numerically by Robnik (1984) that 
the transition between Poisson and GOE statistics is a continuous one, and this has been 
confirmed independently by Seligman et a1 (1984). Berry and Robnik (1984) elaborated a 
semiclassical theory for the energy level spacing distribution P ( S )  in such a mixed regime. 
The theory rests upon an assumption about the semiclassical localization of eigenfunctions 
and the associated Wigner phase-space distrihutions either in classical regular or classical 
irregular regions. The sequences of levels associated with these regions are assumed to 
be statistically independent, and their mean spacing (or the level density) is determined by 
the invariant measure of the corresponding regions in classical phase space. The simplest 
two-component Berry-Robnik formula for one regular component with measure pi and one 
irregular component with measure p2 = 1 - pi reads 

P,B,R(s) = {p:erfc(f&pzS) + (2plp2 + ~ n p ~ ~ ) e - ~ ~ " / ' ~ e - ~ ~ ' .  (3) 

Initially there seemed to be some numerical evidence in support of the applicability of 
this semiclassical theory (e.g. Meyer er a1 1984, Seligman et a1 1985, Seligman and 
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Verbaarschot 1985), but the statistical significance was not good enough to draw firm 
conclusions. Moreover, recently there has been a number of numerical works (Wintgen 
and Friedrich 1987, Honig and Wintgen 1989) showing that quite unexpectedly the Bmdy 
distribution (Brody 1973, Brcdy er al 1981) gives quite a satisfactory fit globally. The 
Brody distribution, which is given by 

is characterized by an important feature of power-law level repulsion ai small S. It must be 
emphasized that this is only an ad hoc one-parameter family of distributions and in contrast 
to (3) has no deep physical background, but it interpolates between Poisson (1) () = 0) 
and Wigner (2) (p  = 1) in a simple way. Therefore it is frequently used but only as a mere 
reference function. The greatest discrepancy between the Berry-Robnik and Brody formulae 
is at small S. The former formula suggests constant behaviour PZ(0) = 1 - (1 -PI)’ # 0 
at S = 0, while the Brody formula goes to zero as a power law, P!(S 3 0) o( SB -+ 0. 
This phenomenological discrepancy can be explained by the fact that the Berry-Robnik 
formulae are not correct at small S for finite non-semiclassical spectra and, indeed, simple 
random-matrix-model considerations suggest that P ( S )  should behave like P(S -+ 0) o( S 
in the region whose width drops to zero as fi goes to zero or, equivalently, as the number of 
levels increases (Robnik 1987). A physically more deeply founded version of the Brcdy-lie 
distribution has been recently proposed by Izlllilev (1988, 1989) as discussed in section 4 
(see equations (31) and (32)). 

The motivation for this work is to analyse this transition further and to provide additional 
numerical evidence in order to clarify the situation. The work is based on the method and 
approach developed in Robnik (1  984). Thus we reconsider the generic one-parameter family 
of two-dimensional billiards studied there. 

We have considerably improved the statistical significance of our numerical results, and 
we have observed significant deviation from the semiclassical Beny-Robnik formula except 
for large level spacings, S > 1. We have indeed observed power-law behaviour P ( S )  o( SB 
at small S, S c 1, where the so-called ‘level repulsion parameter’ p smoothly varies 
from 0 to 1 as the transition parameter is varied. Globally we find statistically significant 
agreement with the phenomenological distribution of Izrailev (1988, 1989). cf Casati et a1 
(1991) (which is reminiscent of Brody), but at large S the significance is comparable with 
that of the Berry-Robnik formula. 

2. Geometry of the billiard and its dynamical properties 

The domain of our billiards is given by the quadratic conformal map of the unit disk in a 
complex plane w ,  

B = {wlw = L + Az’, IzI < 1). (5) 

The particle moves freely inside the billiard and bounces off the boundary 83 elastically. 
The classical and quantum mechanics of these systems have already been studied by Robnik 
(1983, 1984). See also Hayli et a1 (1987). It has been shown there that this one-parameter 
family of billiards exhibits a smooth transition from the integrable case (circle, A = 0) to 
an almost ergodic case (a < A c i). In order to obtain a smooth analytic boundq  the 
parameter A must lie in the interval (0, 6) and figure 1 shows the shape of the billiard for 
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a few typical values of A. For small values of the perturbation parameter A the billiard is a 
typical KAM system whereas for larger values of A only one chaotic region dominates the 
phase space with only a few stability islands covered with invariant tori. The total area 
in the bounce map (poincar6 surface of section) of these invariant tori becomes negligible 
when the s h s p  of the billiard becomes non-convex, for A =- $. 

T Prosen and M Robnik 

Fwre 1. The shapes of the billiard boundary at four different values of the perturbalion 
parameter k (0) 0.125, (b) 0.25. (E )  0.375 and ( d )  0.5. 

3. Quantization and the numerical method 

Here we present a method for quantization of the billiard which tums out to be the most 
efficient numerically if one wishes to calculate all eigenenergies but no eigenvectors. The 
idea follows Robnik (1984) and is based on diagonalization in a truncaied basis but it uses 
different ordering of the basis vectors in order to reveal a special and useful structure of the 
matrix. 

We have to solve the following stationary Schriidinger equation 

where the index of the Laplacian denotes the variable with respect to which it acts. We 
can set the factor 2m/fi2 equal to 1 by choosing the proper energy units. Then we use the 
conformal mapping w(z)  = z + Azz, and transform equation (6) to the unit disk where we 
introduce the polar coordinates (r. 4) 

A,+'.'Cr. @) + E(1+ 4Azr2 + 4Ar cos(@))$'(r, 4) = 0 +'(I, 4) = 0 (7) 

where we use the conformal map of the Laplacian AI = Idw/dz12A, and denote the 
wavefunction (in the z-plane and polar coordinates) by $'(r, 4) = $(w(re~)). On the unit 
disk one explicitly knows the orthonormalied eigenfunctions of the -Az operator, namely 
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un(r. 4) with eigenvalues zi, thus (Ar+z:)u, = 0, which can be used as a basis to express 
the wavefunctions in the form 

When one inserts (8) into equation (7), multiply it with U, and integlate over the unit disk 
one obtains 

So the reciprocal energies can be calculated as the eigenvalues of the matrix J and the 
corresponding eigenvectors c can be used to determine the eigenfunctions according to the 
transformation formula (8). The problem is numerically well defined as soon as we have a 
finite mncated basis (U. In E F)  where 3 is a finite set of indices. The most convenient way 
to choose a finite basis from the infinite complete one is to pick all those basis functions un 
whose corresponding eigenvalue zn is smaller than some prescribed threshold wavenumber 
kcumB, -7 = [n lz, .c kcut&]. In other words, the finite sub-basis consists of all eigenfunctions 
up to a given energy (of the unperturbed system, i.e. circle). 

Our billiard has one discrete geometric symmetry, namely the reflection symmetry with 
respect to the real axis, so we have two types of state; those with even parity @(tu) = @(U*) 
and those with odd panty @(U) = -@(to"). These two types of state must be treated 
separately. 

Now we can specify our basis functions; they are well known products of Bessel and 
aigonometric functions 

with normalization constants 

from which a simple selection rule can be extracted 

Ik - k'l > 1 * J(k/).(k?,) = 0. 
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This selection rule suggests us how to order our truncated basis {uk~l(k.l) E F] to obtain 
the most convenient form of a matrix for numerical diagonalization. Let us denote the 
maximal number of radial nodes K = max{kl(k, I )  E F) and maximal number of angular 
nodes at fixed number of radial nodes Bk = max(ll(k, I)  E n. If we choose the ordering 

(15) 

then the matrix will have 'block tri-diagonal' sln~cture with blocks of variable sizes 
E,, B2,. . . , B K .  Such a matrix can also be regarded as a symmetric banded matrix with a 
half-bandwidth equal to B1+ & because the inequalities B1 2 & 2 . . . 2 B K  follow from 
the properties of zeros of Bessel functions. If one carefully looks at the table of zeros of 
Bessel functions one obtains an approximate formula Bk = (K - k) /3 .  If we denote the 
dimension of our basis by N we can further write N = EL, Ek = K 2 / 6  % 3Et /2 .  We 
used the double precision NAG-library routine FOlBWF (on the VAX 8800 computer) for 
calculating all eigenvalues of real banded symmetric matrix. The total number of operations 
for this algorithm is propodional to the square of dimension N times the bandwidth. 
In our case we have O(NZ5) because ET = O( f i ) .  This is a factor f i  faster than 
diagonalization of the full matrix (or the same matrix in a differently ordered basis) which 
is of the order O(N3). 

We must consider the fact that, since we used a finite truncated basis, only the low-lying 
levels are accurate. Experience shows that roughly 25% of levels are accurate within 0.01% 
of the average level spacing, 30% of levels within 0.1%. and 35% of levels within 1%. We 
have typically employed a basis of 12ooO basic functions for h = 0.050,0.075,0.175 or 
8200 basic functions for A = 0.100,0.125,0.150,0.200,0.225,0.250,0.375. This enabled 
us to obtain 3800 or 2600 levels correspondingly. accurate within a few thousandths of the 
mean level spacing for each parity. 
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(k.l):(L 1),(1,2)...(1,E1),(2. 1),(2,2) ... (Z,EZ)...(K,EK) 

4. Numerical resutts 

The most important and most commonly studied statistical measure of a given spectrum is 
the level spacing distribution P(S) .  We would like to point out that in studying P ( S )  it 
is not wise to analyse the numerical histogram (for P ( S ) )  itself for two reasons. First, the 
bin size is always chosen in an arbitrary way and, second, by bining the data into bins we 
actually lose the information which we are working hard to compute. Instead we study the 
cumulative level spacing distribution W(S)  = i," ds P(s)  and some functions of it rather 
than the level spacing distribution P ( S )  itself. 

The first step in the numerical analysis of the spectrum is the so-called unfolding 
procedure (see e.g. Bohigas and Giannoni 1984). i.e. transforming the spectrum in such 
a way that the average level spacing in the neighbourhood of each level in the transformed 
spectrum is unity. If { E ,  In = 1 , 2 , 3 . .  .) is our original computed energy spectrum then the 
most natural way to define the unfolding would be 

where N ( E )  is a smooth part of the spectral staircase function, i.e. the average or expected 
number of levels with energy below E. In the case of smooth billiards, N ( E )  can be 
calculated by the generalized Weyl asymptotic formula (Baltes and E l f  1978) 

AE L a  1 N ( E )  = ---+- 
4rr 4ir 6 
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where A is the area and I: is the perimeter of the billiard. In ow case, A = n(1 + 2Az), 
I: = 4(1 +2A)E(m/(I +2A)), where E(k)  is the complete elliptic integral of the second 
kind. We should consider levels with even and odd parity separately. For odd parity we 
can construct N d d ( E )  using the Weyl formula by considering only the upper half of our 
billiard with a border along the x-axis (because odd wavefunctions a x  zero there). Since 
we know that N ( E )  = Ndd + Ne,, we can thus also calculate N,,. The exact results are 

1 + (1 + 2A)E(&/(1+ U)) + 1 5 (isj N&(E) = - E -  
8 2Jr 

Now we consider the sequence of level spacings Sa = e,+ -e,. If there are N of them 
then we define the cumulative level spacing distribution simply as 

where 6(x)  is the Heaviside unit step function. In practice we order the set of level spacings, 
sothat St 6 SZ 6 ... 6 SN, and then we can write 

n 
(21) W ( s )  = * sn < s C S n t l  SO := 0 s N + l  := 02. 

Knowing that such a W(S)  is, in fact, a numerically measured quantity of some unknown 
exact distribution W(S) we are motivated to estimate an expected statistical error of our 
'measurement' denoted by 6W(S).  

Assuming that ordered level spacings are mutually independent 'events' we define a 
probability that k of N randomly selected level spacings will be smaller than S, R / ( S ) .  
According to the assumption R t ( S )  is a simple binomial distribution for fixed values of N 
and S, that is 

R,N(S) = (;)(W(S))'(l - W(s))N-'. (22) 

The expected value of W ( S )  is given by the share of the level spacings below S 

Thus, the expected value of cumulative level spacing distribution W ( S )  is the measured 
value W(S).  The statistical error (one sigma) 

can also be calculated directly, giving the result 
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Figure 2. The cumulative level spacing distribution W ( S )  at four different values of the 
pcrmrbation parameter 1: (4) 0.05, (b) 0.15. (c) 0.2 and (d)  0.375. The gradual m i t i o n  
from Poisson towards Wigner-like distdbution is clearly ObseNed. 

Figure 2 shows the cumulative distribution W(S) for a few typical values of the parameter 
A together with the exact Poisson and Wigner curves. The numerical W(S) clearly shows 
a gradual transition from Poisson to Wigner type distribution as A is varied from 0 (circle) 
to A = 4 (almost ergodic). 

In order to clearly expose the qualitative features of W(S) such as the power-law level 
repulsion at small S we will use another approach, using the analytically simple Brody 
distribution as the reference function. Analytic expressions for the Brody family of level 
spacing distributions (Poisson and Wigner are only special cases for b = 0, 1 respectively) 
are even simpler when written in cumulative form, namely 

(26) W, B (S) = 1 - exp(-bSB+') 

where b = b(@) was introduced in (4). One might thii of the Brody family of distributions 
as the simplest one which interpolates between Poisson and Wigner distribution as the 
parameter ,B is varied form 0 to 1. The most interesting feature of the Brody distribution is 
the power-law behaviour at small S. One is tempted to test how well the real level spacing 
distribution can be fitted with the Brody distribution and, in particular, whether it behaves 
as a power law at small S. In order to study this, it is convenient to in!xoduce the following 
functional transfanation of the level spacing distribution, namely 

T(u) = In(-In(l - W(expu))). (27) 
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This unusual transformation has the property that it transforms the Brody distribution to the 
straight line 

(28) 

Using this representation it is very easy to test by linear regression or even by the naked 
eye whether and how well the straight l i e  can fit our numerical data If so, then the slope 
of the fitting line minus one gives the so-called level repulsion paramter B. One can use 
equations (25) and (27) to calculate the expected error of the T-function 

TF(u) = @ + I)u + lnb. 

which unfortunately diverges at U = &too. This implies that the T-function is quite uncertain 
at very small and very large level spacings. Otherwise the T-function tums out to be very 
useful and we can now demonstrate the power-law behaviour over a few orders of magnitude 
(for S from a few times W3 up to about 1) (see figure 3). As can be seen, only at large 
level spacings (S z 1) do the deviations from the straight line become significant. It can be 
concluded that at large S the real P (S) decays faster than the best fitting B d y  distribution. 

Although the T-function can help us to demonstrate power-law behaviour it is 
inconvenient in studying the global properties of the level spacing distribution. There 
are two reasons for this. First, the estimated error function ST is non-uniform in the sense 
that it gives different weights to different 'experimental points' cn = Ins,. Second, the 
numerical points are distributed non-uniformly over the u-axis, in particular they are denser 
at larger U.  This means that the right-hand side of the figure canies more information than 
the left-hand side. We would like to plot our data in such a way that each unit area of the 
graph canies an equal amount of information. First we introduce a transformation V(W) 

(30) 
which has the property that the estimated error for U(W(S)) is a constant-equal for all 
level spacings S, 6 U ( S )  = JdU/dWIGW(S) = l/(rfl). Now we apply the best fitting 
Brody distribution W;(S) to our spectrum and plot the deviation U(W(S)) - U(W;(S)) 
against WF(S). Since we know that W;(S) gives quite a good global fit the abscissae 
of 'experimental points' W&) will be fairly equidistant, i.e. uniformly distributed. Such 
graphs show the fine-scale deviations from the Brody distribution (see figure 4) which now 
become significant. 

There is another oneparameter family of level spacing distributions which interpolates 
between the Poisson and Wigner distribution devised by Izrailev (1988, 1989) on 
phenomenological grounds. This distribution stems from the study of nearest-neighbour 
eigenangle spacing distribution for the kicked rotator. It displays a smooth transition from 
Poissonian statistics for small values of the parameter, namely the kick strength k, to the 
GOE (Wigner type) for large values of k, although the classical dynamics is fully chaotic in 
all cases. This effect is a consequence of the interplay between the diffusion in phase space 
and the quantum localization and is typical of timedependent (driven) systems. Izrailev 
distribution could also be relevant to our problem, because in fact he used only the idea 
of generalizing the joint distribution of eigenangles P ((&I) 0: n,, le6 - e'#ml@ to all 
values of B (not only for ,¶ = 0 (Poisson), 1 (GOE), 2 (CUE)). This reasoning so far has only 
phenomenological support. Izrailev suggests the formula (see also Casati et d (1991)) 

U(W)  = (2/rr) cos-' m 

$(S) = AS@(l + BS)f(8'exp[-&%rZSZ - $r(1-  $)S) (31) 

f(B) = (2@(1 - B/2))/,4 - 0.16874 (32) 
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Figure 3. 7-function against C= at 4% diffcrcni values of the permhation panmew A: (a) 0.1, 
( b )  0.125. (c) 0.15. ( d )  0.175. (e) 0.2 and (f) 0.375. The WO suaight l i  comsponding 10 
the Poisson and Wigner dimibutions are shown for comparison. The region of power-law level 
repulsion is clearly exended mer several orden of magnitude and with varying panmeter A 
clearly shows a continuous bansirion from Poisson to Wigner. For the corresponding values 
of the level repulsion vanmm B see table I.  The size of the tars indicates the e s t i m d  
i o n e - s i p a  error. 

where the parameters A and B are determined by the normalization conditions f dS P , ( S )  = 
1, f dSSPj(S) = 1. We have tested this formula and found a significant match with 
numerical data, much better than for the Brody distribution (see figure 4 and table 1). The 
larger values of the level repulsion parameter ,9 as determined by the Brody fit, as compared 
with those determined by the Ixailev fit, can be understood as follows. The domain of the 
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2 
5 * 5 

I 

Figure 4. Rne-scale representation of the deviation of the numerical level spacing distribution 
P ( S )  from the best fittine Brodv dislribution. We ulot LI(W(S)) - U(W!(S)) against @@). . .  I .  

The upper and the lower noisy curves represent o&sigmabeviation h m h e  ac&y c a l C h 4 e d  
numericaldafawhichthuslieiethemiddleofUleband. Theone-sigmaerroris wnstanlalongthe 
&&sa in this represemation.. The smooth curve represents the test fitting Inailev distribution 
while the broken curve represene the best fitting Beny-Rob& distribution based on Ule.dafa 
of the dashed region. The doned region is just an exnaplation of the obtained distribution. 
The chosen values of ule parameter A in ( U )  to (f) are the same as in figure 3. The determined 
values of the pamnelers of the best fitting dishibutions are given in table 1. 

greatest deviation from the Bray  distribution is in the asymptotic tail (S + 00) where 
the slope of the numerical data increases in the T-function representation which leads to a 
larger slope in the global straight-line fit i.e. fi  increases. 
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Table 1. The paramems and the chi-squares divided by the number of 'experimental points' 
of the best fit Lo the Bmdy, lnailev and Berry-Robnik formulae far level spacing distribution. 
In the last column an accurate value of PI is given as determined by classical dynamics. ?he 
inequality signs indicate that a given quantity has definitely not yet converged and it changes 
in the indicated direction as thc number of levels in the spectral sample incRases (towards 
the semiclassicat limit). ?be values in the table were detemined using 7600 levels of both 
parities for A = 0.050.0:075.0.175 and 5 2 0  levels for all ouler values of A. In all cases where 
convergence is clearly not yet observed the lower half of the spectral sample was not included 
in the statistics (since they would spoil the semiclassical limiting behaviour), whilst in all other 
cases 1200 IOWKI levels were discarded for the same reason. 

A BE xZiN Br x 2 i N  P; x'IN PC' 

0.050 c0.04 1.0 c0.03 0.7 >0.76 0.2 0.98 
0.075 c0.07 0.6 c0.05 0.3 >0.74 0.2 0.96 
0 .10  
0.125 
0.150 
0.175 
0.20 
0.225 
0.250 
0.375 

0.10 
0.10 
0.24 
0.37 
0.64 
0.83 
0.92 
0.94 

0.7 0.07 0.3 ,068 
I .o 0.08 0.4 > O H  
0.6 0.19 1.3 0.54 
1.1 0.31 0.4 0.30 
0.4 0.59 0.8 0.18 
0.4 0.82 0.4 0.07 
0.4 0.95 0.5 0.03 
0.4 0.97 0.4 0.02 

0.2 0.88 
0.2 0.70 
1.8 0.36 
0.3 0.17 
1.6 0.05 
0.4 -0 
0.2 -0 
0.3 -0 

We have also used the Berry-Robnik formula for the case of only one stochastic 
(irregular) component and one integrable (regular) component of phase space since the 
examination of the classical phase space (Poincad surface of section) shows that only 
one chaotic region dominates (the SOS) at all values of A, except for very small h. where 
all chaotic regions can be neglected. The global fit by the Berry-Robnik formula is not 
meaningful because of the large deviations at small S. Nevertheless, when only the data 
for sufficiently large level spacings (S > 1) are used for this purpose then the fit becomes 
statistically significant. In this way the measure PI of the regular component in the phase 
space can be estimated and compared with the more accurate result obtained by studying 
classical mechanics (see table I). The two quantities, the quantal pp and the classical pp', 
actually disagree and this problem will be discussed in the next section. 

We have also studied the spectral rigidity defined as 

where the angular brackets in (33) indicate averaging over the spectrum (over the variable 
e). The results for a several typical values of the parameter A are shown in figure 5. They 
qualitatively interpolate between the Poisson and GO€ regimes. It is hoped that we can 
get some independent information about the parameter PI by the best fit to the simplest 
semiclassical formula for the spectral rigidity (cf Seligman and Verbaarschot 1985) 

A(W = ApoisSon(~~L) + AGOE((~ -PI)L). (35) 

Because of the saturation effect (see figure 5) (which is a consequence of the finite 
spectrum) we are limited to a relatively small region L < 10. According to Berry's 
(1985) semiclassical theory of spectral rigidity the saturation effects set in at L > L,  = 
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2-/10 where Io is the geometrical length of the shortest periodic orbit (twice the 
length of the shortest diameter; we have 10 = 4). A is the area of the billiard and Nmsx is 
the sequential number of the highest energy level included in the spectral sample. In our 
case we have the estimate L ,  c 60. In fact, the saturation typically starts at somewhat 
smaller values of L (in our case about L % 12, see figure 5 )  (cf Robnik 19923. 

Figure 5. The spectral rigidity as described by A(L).  The Poisson line and WE curve arc shown 
in full. The numerical data (circler) are fined in the range 0 < L < 10 by the semiclassical 
formula (35) (full curve). ?he gradual m i t i o n  from Poisson to W E  is seen as the pawneter 
A is varied, A: (U) 0.05. (b) 0.175. (c) 025 and (d)  0.375. As can be Seen ule saturation effSL5 
sfaR at L ss 12 which is notably smaller than the thenretical estimate h- * 64 (see text). 

Although the fit to the formula (35) is not very sensitive to small variations in the 
parameter PI in this region of L, we have determined PI by the best fitting curve (35). In 
table 2 we give the resulting values of PI at various values of h and see that they agree 
very well with the values read from the best fit by the Beny-Robnik semiclassical formula 
for P ( S )  (see table I), but disagree with the accurate vaiues determined from the classical 
dynamics. 

5. Related theoretical developments and possible interpretations 

The question which now arises is how to interpret our numerical res&. We have found 
significant deviations from the semiclassical formulae although we considered finite but 
large spectral samples with up to almost the 8oooth energy level of OUT Hamiltonian system 
which we beieve is generic. There are two possible answers: either the basic assumption of 
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Table 2. The values of the quantal parameter PI for a few values of A which are determined by 
fitting the specu'al rigidity A ( L )  with the semiclassical formula (35) in the region 0 < L < IO. 
The inequality signs in the table indicale that a given quantity has definitely not yet converged 
for the finite spenral sample (of 2030 to 3800 levels of fixed parity) but it still changes in the 
indicated direction as h e  scmidassical limit is approached. The spectral samples are the same 
as in table 1. 

____ 

;* P;"" pi"" 

0.050 >0.76 >0.77 
0.075 >0.77 >0.72 
0.100 0.67 0.66 
0.125 0.70 0.63 
0.150 0.50 0.50 
0.175 0.31 0.29 
0.200 0.18 0.17 
0.225 0.05 0.04 
0.250 0.02 0.02 
0.375 0.00 0.02 

statistical independence in the derivation of the semiclassical formulae of Berry and Robnik 
(1984) is not satisfied or the semiclassical limit has not yet been established. 

The basic assumption in the derivation of the semiclassical formulae rests upon the idea 
that the Wigner phase-space distribution of each eigenstate always condenses on a single 
classically ergodic component (either connected ergodic-like region or invariant torus) in 
the semiclassical limit. This assumption has so far been rigorously proven only for the 
special case of integrable systems (Berry 1977a). In another extreme of ergodicity this 
assumption implies that the Wigner phase-space distribution of each eigenstate is (almost) 
microcanonical (Voros 1976, Beny 1977b). except for the scars (Heller 1984, Berry 1989, 
Robnik 1992~). We should mention our preliminary results of a separate work in which we 
numerically study the projections of the Wigner phase-space distributions to the Po incd  
surface of section for the same family of billiards in the mixed regime. So far we have 
found nothing which would disprove the basic assumption (Prosen and Robnik 1992). 

It should be mentioned that Bohigas et a! (1990) have recently analysed in detail a 
2D system of two coupled ID quartic oscillators and numerically verified the validity of 
the Berry-Robnik surmise in the semiclassical limit. Using the presence of dynamical 
quasi-degeneracy of regular energy levels (due to discrete symmetries in their system) they 
were able to separate the regular and irregular levels clearly. The irregular levels were 
shown to be associated with one chaotic component which, however, possesses a finite-time 
structure due to partial barriers in classical phase space. They have successfully explained 
the deviations in the number statistics of the irregular spectral component from the GOE 
as being due to badly articulated ergodicity, i.e. due to slow transitions between the five 
chaotic basins. But their results clearly show the approach to GOE in the semiclassical limit 
h + 0, as the number of energy levels in the spectral sample goes to infinity. This is yet 
another confirmation of the Bohigas et nl (1984) conjecture. But it should be emphasized 
that their system is already quite far from the regime of soft KAM chaos. 

So, there remains the second possibility of very slow establishment of the semiclassical 
limit, which seems more plausible. Even though the semiclassical formulae (for P(S)  and 
A(L)) give the same but incorrect resultst for PI .  and completely incorrect P ( S )  for small 

t l b t  is PI,  as determined by the best semiclassical fit to P ( S )  by the Berry-Robnik formula. is in excellent 
agreement with the value of PI  as determined by the best semiclassid fit to A(L),  but disagrees with the classical 
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S, this can be qualitatively understood. Small level spacings can feel the correlations among 
level sequences which correspond to Wigner phase-space distributions (of eigenstates) with 
semiclassically disjoint supports. This effect was expected (Robnik 1987) and it is only 
surprising that it is so large. On the other hand, we believe that the incorrect values of 
p1 could be corrected if much larger portions of the spectrum would be calculated to and 
included in the evaluation of the statistics. For small values of the pemrbation parameter 
X the chaotic regions in phase space are small [they form a fractal set) and that may be 
the reason why the semiclassical limit is still being slowly formed so that the values of /3 
and p, are clearly seen to change when the spectral sample increases. At larger values of 
X (A > 0.1) such a change has not been observed, perhaps because it is even slower, since 
the fine-scale details of the chaotic regions in the classical phase space are only gradually 
resolved by quantum waves as their wavelength goes to zero. If this qualitative interpretation 
is correct then we ought to understand theoretically (also in a quantitative manner) why the 
convergence is so slow, which at present is not possible. 

We conclude that here we have dealt with too few levels to be able to study the 
semiclassical properties of the spectrum. One can see that in this mixed regime the global 
fit is described quite well by the phenomenological lzrailev distribution. In order to explain 
this observation we studied in a separate work (Prosen and Robnik 1993) the properties 
of the random matrix en semble^ which models dynamical systems in the transition region 
between integrability and chaos (which become KAM systems when they come sufficiently 
close to the integrability). This ensemble is expected to capture all &e average statistical. 
correlations between the energy levels, but completely i g n e  all dynamical correlations at 
the outset. The idea for constructing this ensemble comes from the classical perturbation 
theory, where one writes the KAM Hamiltonian as a sum of an integrable part in terms of ~ 

canonical actions plus small perturbation which can be expanded into harmonic (Fourier) 
series in canonical angles. We consider the semiclassical eigenfunctions (as determined by 
the tori quantization) of the integrable part as a basis of the Hilbed space. If this basis is 
ordered according to the increasing eigenvalues of the integrable part then the Hamiltonian 
becomes a sparsed banded matrix.  we^ assume random distribution of the positions of non- 
zero offdiagonal elements and of their values and define a sparsed banded random matrix 
ensemble (SBRME). This random matrix ensemble is described by three parameters: the 
average increment a! of Poissonian distributed diagonal elements, the bandwidth b which 
dictates li - j l  > b 3 H ~ J  = 0, and the average number m of uniformly distributed off- 
diagonal non-zero elements in each row. (The latter are assumed to be Gaussian random 
variables with zero mean and unit second moment.) SBRME is a generalization of the BRME 
as defined by Wilkinson er al (1991) where m = b. We have found that for SBRME the 
level spacing distribution P (S) can again be quite well fitted by the Brody distribution, 
especially for sufficiently small ratio m/b,  the sparsity. The latter becomes small in the 
semiclassical limit because the scaling laws with h and the perturbation parameter E are 
a = O(hf/c), b = m = U(1). The preliminary results of this research in prog&s 
show that the qualitative behaviour of the level repulsion parameter /3 as the function of E 

is correct @ ( E )  is a monotonically increasing function) which is not the case if the BRME 
(m := b) is used. Of course, we numerically observe the transition between these two 
regimes as~the sparsity is varied. 

We are thus faced with the not yet solved paradox that for almost any finite spectrum 
some kind of Brody-like distribution for P(S) seems to be adequate (in particular at small 
S) even if we are confident that the semiclassical Beny-Robnik formula should hold for the 

P I .  See tables I and 2. . .  
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infinite spectrum. We should be aware of the fact that we cannot reproduce semiclassical 
formulae using any random matrix ensemble since we lose all dynamical correlations by 
the assumptions of randomness in the very definition of the ensemble. We speculate that 
these so-called dynamical correlations may not be so important for finite but quite large 
spectra (and that may he the reason why random manix theories work so well) but they 
must become crucial for infinite (semiclassical) spectra We can only conclude that such a 
semiclassical transition apparently occurs quite late (a typical threshold size of a spectrum 
must be larger than 104 at least in the case of our Hamiltonian) and it can hardly be studied 
with present computer capabilities. 

6. Discussion and conclusions 

In this paper we have presented the revised and statistically significantly improved results 
on the energy level statistics of the billiard Hamiltonian introduced and studied by Robnik 
(1983, 1984). We have analysed the level spacing distribution P ( S )  and the spectral 
rigidity A(L)  in the transition region between integrability and chaos. At small S, such 
as 0 < S < 1, we clearly find the power-law level repulsion and a good fit by the Bmdy 
distribution and, more importantly, an even better fit by the phenomenological formula 
devised by Izrailev (1988, 1989). See also Casati er ai (1991). In this small4 region the 
semiclassical formula by Berry and Robnik (1984) is found to be inadequate. This has 
been qualitatively predicted (Robnik 1987). except that now this region of discrepancy is 
larger than expected and it displays a general power law rather than Linear level repulsion. 
Namely, the level repulsion parameter @ varies continuously with the deformation parameter 
between 0 (Poisson, circle) and I (Wigner-like, ergodic-like). However, for larger S, say 
S > 1, we do find a statistically significant fit by the Berry-Robnik formula for P ( S )  
(of approximately the same quality as the formula by Izrailev), except that the quantal 
parameter p1 deviates from the invariant measure of the regular component as determined 
by the classical dynamics. The quantal parameter p~ as determined by the semiclassical 
formula for the spectral rigidity A(L) .  for 0 6 L 6 IO, however, agrees very well with 
the quantal p1 based on P ( S ) .  We conclude that the semiclassical formulae (for P ( S )  and 
A(L) )  are correcf but that the semiclassical limit is approached very slowly. The deviation 
of the quantal p1 from the classical p1 is explained qualitatively by correlations between 
the nearby energy levels due to the partial overlap of the corresponding Wigner phase-space 
distributions of eigenstates which are not yet sufficiently localized on their semiclassical 
supports. We propose that the small4 region shrinks as we approach the semiclassical 
limit, and that in this region all the dynamical correlations are typically averaged away and 
are therefore not important. Thus we propose, as explained in detail in a separate work 
(Prosen and Robnik 1993). that this somewhat universal behaviour of P ( S )  at small S for 
finite spectra can be correctly captured by the sparsed banded random matrix ensemble 

In another separate work (Prosen and Robnik 1992) we analyse the numerical Wigner 
phasespace distributions of eigenstates in the mixed regime and discuss the validity of the 
basic assumption upon which the semiclassical theory by Berry and Robnik (1984) rests. 
In this semiclassical limit we expect the dynamical correlations to become important, the 
SBRME to becomes inadequate and the semiclassical formulae of Berry and Robnik to apply. 

(SBRME). 
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